The partition function of the two-matrix model as an isomonodromic tau-function

نویسندگان

  • M. Bertola
  • O. Marchal
چکیده

We consider the Itzykson-Zuber-Eynard-Mehta two-matrix model and prove that the partition function is an isomonodromic tau function in a sense that generalizes Jimbo-Miwa-Ueno’s [20]. In order to achieve the generalization we need to define a notion of tau-function for isomonodromic systems where the ad–regularity of the leading coefficient is not a necessary requirement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partition functions for Matrix Models and Isomonodromic Tau functions

For one-matrix models with polynomial potentials, the explicit relationship between the partition function and the isomonodromic tau function for the 2×2 polynomial differential systems satisfied by the associated orthogonal polynomials is derived.

متن کامل

Moment determinants as isomonodromic tau functions

We consider a wide class of determinants whose entries are moments of the so-called semiclassical functionals and we show that they are tau functions for an appropriate isomonodromic family which depends on the parameters of the symbols for the functionals. This shows that the vanishing of the tau-function for those systems is the obstruction to the solvability of a Riemann–Hilbert problem asso...

متن کامل

Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions

The differential systems satisfied by orthogonal polynomials with arbitrary semiclassical measures supported on contours in the complex plane are derived, as well as the compatible systems of deformation equations obtained from varying such measures. These are shown to preserve the generalized monodromy of the associated rank-2 rational covariant derivative operators. The corresponding matrix m...

متن کامل

The PDEs of biorthogonal polynomials arising in the two – matrix model 1

The two-matrix model can be solved by introducing bi-orthogonal polynomials. In the case the potentials in the measure are polynomials, finite sequences of bi-orthogonal polynomials (called windows) satisfy polynomial ODEs as well as deformation equations (PDEs) and finite difference equations (∆E) which are all Frobenius compatible and define discrete and continuous isomonodromic deformations ...

متن کامل

Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds and Its Applications

In this work we find the isomonodromic (Jimbo-Miwa) tau-function corresponding to Frobenius manifold structures on Hurwitz spaces. We discuss several applications of this result. First, we get an explicit expression for the G-function (solution of Getzler’s equation) of the Hurwitz Frobenius manifolds. Second, in terms of this tau-function we compute the genus one correction to the free energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008